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The analytical procedure for the determination of all compo-
nents of the symmetric hyperfine tensor of the I = 1/2 nucleus in
the g-tensor coordinate system is described, assuming that nuclear
frequencies corresponding to the principal directions of the g-tensor
and exact values of the external magnetic field (or nuclear Zeeman
frequencies) are experimentally available. C© 2002 Elsevier Science (USA)
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INTRODUCTION

Structural studies of paramagnetic metal complexes or rad-
icals in frozen solutions or powders by high-resolution EPR
spectroscopy, including CW and pulsed ENDOR and one- and
two-dimensional ESEEM, are based on the measurement of
hyperfine and quadrupole couplings from magnetic nuclei in
their surroundings (1–5). The most complete characterization
of electron–nucleus interactions would require determination of
the principal values of hyperfine and quadrupole (for nuclei with
I ≥ 1) tensors and the orientation of their principal directions
relative to the g-tensor axes.

In this study we consider the special case of paramagnetic
species, which posses EPR spectra with the lineshapes de-
termined by the rhombic g-tensor anisotropy (g1 > g2 > g3)
without resolved hyperfine structure. The orientation-selected
ENDOR or ESEEM experiments are usually done to determine
the nuclear frequencies at different points along the complete
EPR spectrum (6). These experiments select species with differ-
ent orientations of the g-tensor relative to the applied magnetic
field. For instance, the measurements with the field chosen to
select the low and high extreme edges near the maximal and min-
imal g-values give “single-crystal-like” patterns from the species
whose g1 and g3 axes are directed along the magnetic field. It
is generally accepted and supported by a large body of experi-
mental data that nuclei with I = 1/2 (such as 1H,13 C,15 N,19 F,

and 31P) produce a doublet of lines with splittings equal to the
corresponding diagonal element of the hyperfine tensor in both
single-crystal-like spectra (7–9).
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In contrast, the resonance condition at the intermediate g2

value is fulfilled by many different yet well-defined orienta-
tions. The lineshapes of nuclear frequencies measured at the
g2 position are more complex. However, Hoffman et al. for-
mulated rules for accurate estimation of the hyperfine splitting
along the g2 direction itself (7). Thus, measurements at three
points corresponding to the singularities of the rhombic EPR
spectrum provide diagonal elements of the hyperfine tensor,
which also determine an isotropic hyperfine constant. For many
ENDOR/ESEEM spectroscopic studies this approach represents
the end point, because the complete determination of the tensor,
even for the simplest case of one I = 1/2 nucleus, would require
a much more extended effort, based on numerous simulations of
the complete set of orientation-selected spectra collected over
the entire EPR spectrum (8–10). The complexity of the analysis
would increase proportionally if the tensors of several nuclei
need to be determined from experimental spectra of nuclear fre-
quencies.

In the present article we describe a simple analytical procedure
for the determination of all components of symmetric hyper-
fine tensor of I = 1/2 nucleus in the g-tensor coordinate system
when g-tensor anisotropy dominates all other interactions. It is
assumed that nuclear frequencies corresponding to the princi-
pal directions of the g-tensor and exact values of the external
magnetic field (or nuclear Zeeman frequencies) are experimen-
tally available. This procedure works best when the hyperfine
interaction is comparable with the nuclear Zeeman interaction.
We anticipate that this approach will provide an accurate, rapid
estimate of hyperfine tensors and will simplify the subsequent
simulation procedure of orientation-selected ENDOR/ESEEM
spectra. It can be applied not only in the case of a single nucleus
but also when the spectra are contributed by several nuclei.

One caveat is necessary. It is known that for low-symmetry
systems, the hyperfine tensor is, in general, asymmetric (11–15).
Hyperfine tensor asymmetry has been treated experimentally by
several authors (see (14, 15) and references therein). Neverthe-
less, for species with S = 1/2 this asymmetry is often small
and does not exceed a few percent. Therefore, the assumption
of a symmetric hyperfine tensor is appropriate in most cases
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and is widely used in the interpretation of experimental EPR or
ENDOR data, in theoretical estimates, and in ab initio quantum-
chemical calculations.

THEORY

The spin Hamiltonian describing the interaction of electron
spin S = 1/2 with a nucleus I = 1/2 in a magnetic field
�H = H �n (�n is the unity vector in a magnetic field direction) has

the form

Ĥ = β H (�n · g · �̂S) + h( �̂S · A · �̂I ) − gI βI H (�n · �̂I ). [1]

Using the nuclear Zeeman interaction of the form presented
in [1], we restrict our consideration to spin systems where the
pseudo-Zeeman effect is negligible, so that no low-lying excited
states coupled to the ground state are present. The vector that
determines the direction of the electron spin quantization axis
may be written as

�ξ = �n · g
gef

, [2]

where

gef = (�n · g · g̃ · �n)1/2 [3]

and g̃ designates the transposed g-tensor. Then, in the first order
of perturbation theory, the effective nuclear spin-Hamiltonian
ĤI corresponding to Ĥ from Eq. [1] is equal to

ĤI = mSh(�ξ · A · �̂I ) − hvI (�n · �̂I ) [4]

or

ĤI = (�bα(β) · �̂I ) [5]

with

�bα(β) = mSh�ξ · A − hvI �n [6a]

νI = gI βI H

h
[6b]

for mS = ± 1
2 , respectively.

The effective nuclear spin-Hamiltonian [4] has the eigenval-
ues

Em(m I ) = m I · ∣∣�bα(β)

∣∣, [7]
where m I = −I, −I +1, . . . ,+I are projections of the nuclear
spin I on the �bα(β) directions. This determines the frequencies
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of nuclear transition with |
m I | = 1 as

να(β) =
∣∣�bα(β)

∣∣
h

. [8]

From Eqs. [6] and [8] this leads to

v2
α(β) = v2

I + m2
S(�ξ · A · Ã · �ξ ) − 2mSvI (�ξ · A · �n). [9]

Writing Eq. [9] in explicit form for vα and vβ, one finds that

2
(
v2
α + v2

β − 2v2
I

) = (�ξ · A · Ã · �ξ ) [10]

and

v2
β − v2

α = 2vI (�ξ · A · �n). [11]

For orientation-selected experiments performed at constant mi-
crowave frequency, νI in Eqs. [9]–[11] is not constant and
depends on the choice of the g-value. In addition to the above-
mentioned symmetric approximation for the A tensor it is gen-
eral practice to use the assumption of a symmetric g-tensor in
the analysis of ENDOR lineshapes of powder and glassy sam-
ples. In this situation, if the magnetic field coincides with one of
the principal directions �e j of the g-tensor (that is, �n = �e j ), then
�ξ = �e j and

gef, j = g j = (�e j · g · �e j ) = (�e j · g2 · �e j )
1/2. [12]

Equations [10] and [11] are transformed to

A j j = (�e j · A · �e j ) = 1

2νI

(
v2
β − v2

α

)
[13]

(A2) j j = (�e j · A2 · �e j ) = 2
(
v2
α + v2

β − 2v2
I

)
. [14]

Thus, the nuclear frequencies along the principal directions �e j

of g-tensor provide the diagonal elements of A and A2 tensors.
However, because the A tensor is by implication symmetric,
knowledge of the diagonal elements of A and A2 opens the
way to determination of the absolute values of the nondiagonal
components of the A tensor as well. According to the definition
of the symmetric A tensor

(A2)xx = (Axx )2 + (Axy)2 + (Axz)
2 [15a]

(A2)yy = (Ayy)2 + (Axy)2 + (Ayz)
2 [15b]

(A2)zz = (Azz)
2 + (Axz)

2 + (Ayz)
2. [15c]
Subtracting [15c] from the sum of [15a] and [15b], one can
get the nondiagonal Axy element of the hyperfine tensor in the
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g-tensor coordinate system,

(Axy)2 = 1

2
{[(A2)xx − (Axx )2] + [(A2)yy

− (Ayy)2] − [(A2)zz − (Azz)
2]} [16a]

In a similar way one can find that

(Axz)
2 = 1

2
{[(A2)xx − (Axx )2] − [(A2)yy − (Ayy)2]

+ [(A2)zz − (Azz)
2]} [16b]

(Ayz)
2 = 1

2
{−[(A2)xx − (Axx )2] + [(A2)yy − (Ayy)2]

+ [(A2)zz − (Azz)
2]}. [16c]

From Eqs. [13], [14], and [16], the complete hyperfine tensor
in the g-tensor coordinate system can be derived. If necessary,
the standard procedure of tensor diagonalization can be applied
now to determine the principal values of the A tensor and the
orientation of its principal directions relative to the principal
g-tensor axes.

DISCUSSION

The formal procedure described for determination of the el-
ements of the A matrix includes several uncertainties associ-
ated with the signs of the tensor elements. The absolute signs
of hyperfine tensors are undetermined in EPR and its exten-
sions. The sign of tensor A influences the frequencies of να

and νβ via the last linear term in Eq. [9] and a change of the
sign for A and mS does not alter this equation. The arbitrary
assignment of two experimental frequencies to να and νβ leads
to an undefined sign for each A j j element and, therefore, only
the relative signs of different components can be considered.
This makes it possible to choose element Axx as positive, for
example. As a result, there are four different combinations of
relative signs for the diagonal elements Axx , Ayy, and Azz , i.e.,
(+++), (++−), (+−+), (+−−) and, respectively, four dif-
ferent values of isotropic hyperfine couplings aiso = 1/3 Tr(A),
in addition to the above-mentioned possibility of sign inversion
for all elements of the A tensor.

There is also some sign uncertainty in the determination of
nondiagonal elements of the A tensor, because nuclear frequen-
cies in canonical orientations of g-tensor do not depend on these
signs. It may be easily demonstrated from a detailed analysis of
the angular dependence of να,β in noncanonical orientations that
four choices for Axy, Axz, and Ayz signs,

(Axy, Axz, Ayz), (−Axy, −Axz, Ayz),
[17]
(−Axy, Axz, −Ayz), (Axy, −Axz, −Ayz),
DIKANOV

lead to the same ENDOR/ESEEM powder pattern. In fact, the
last three combinations in Eq. [17] correspond to rotations of
the A tensor around the three different principal axes of the g-
tensor by π . This allows one to examine only two (instead of
eight) possible sets of nondiagonal elements of the A tensor:

(|Axy |, |Axz|, |Ayz|) and (−|Axy |, −|Axz|, −|Ayz|). [18]

We anticipate that subsequent, more definite, assignment of the
relative signs of the A tensor elements could be performed by
complete simulation of orientation-selected ENDOR/ESEEM
patterns including noncanonical orientations. Information from
other sources such as quantum-chemical calculations or com-
parison with experimentally known similar systems may also be
used for both relative and absolute sign assignment. For example,
the choice of absolute sign can be performed after the diagonal-
ization of the tensor and additional quantum-chemical analysis
of the mechanism of hyperfine interaction between electron and
nucleus in each case.

We illustrate the proposed approach for determination of the
hyperfine tensor components exploring simulated orientation-
selected ENDOR spectra for paramagnetic species S = 1/2
with g1, g2, g3 = 1.9, 1.95, 2.1. 13C ENDOR spectra in the Q-
band (35 GHz) at g1, g2, g3 were simulated for two sets of pa-
rameters, A1, A2, A3 = −0.5, 2, 4 MHz; α, β, γ = 40, 60, 20◦

(I) and A1, A2, A3 = −6, 2, 8 MHz; α, β, γ = 30, 60, 165◦

(II), using the GENDOR program (2, 7, 8, 16). Details of the
simulation are given in the legend to Fig. 1. The difference

FIG. 1. 13C ENDOR spectra (35 GHz) simulated at canonical orientations
of the g-tensor for the S = 1/2, I = 1/2 system with g1 = 1.9, g2 = 1.95,

g3 = 2.1, and A1 = −0.5 MHz, A2 = 2 MHz, A3 = 4 MHz. Euler an-
gles describing orientation of the hyperfine tensor relative to the g-tensor are
as follows: α = 40◦, β = 60◦, γ = 20◦. The linewidth of individual ENDOR
features was taken as 0.2 MHz, and EPR linewidth was taken as 20 G. The corre-
sponding powder EPR spectrum is shown in the upper inset. Vertical lines mark

“experimental” να and νβ nuclear frequencies used for subsequent calculations.



FIG. 2. C ENDOR spectra (35 GHz) simulated using hyperfine tensor
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between the two sets is that the hyperfine interaction is much
smaller then 13C nuclear Zeeman for set I, whereas these in-
teractions may be considered as comparable for set II (νI is
equal to 14.09, 13.729, and 12.748 MHz for observation at
g1, g2, g3, respectively). The “experimental” nuclear frequency
(να or νβ) (Figs. 1 and 3) was determined from the midpoint of
the width of the corresponding ENDOR peak at half height. The
lower frequency peak was assigned to να in all cases (although
this is somewhat arbitrary for set II and ENDOR observation
at g3).

The exact matrix of the hyperfine tensor in the g-tensor coor-
dinate system for set I is equal to

Aexact =

 2.831 0.541 0.948

0.541 1.824 1.704
0.948 1.704 0.844


MHz.

It is convenient to define 
α = vα − vI , 
β = vβ − vI and
rewrite Eqs. [13], [14] in the form more suitable for practical
applications:

A j j = (
β − 
α)

(
1 + 
α + 
β

2vI

)
[19]

(A2) j j = 2
[
2vI (
α + 
β) + 
2

α + 
2
β

]
. [20]

Calculation for the set I gives values for 
α,exact = −1.404,

−0.881, −0.384 MHz and 
β,exact = 1.425, 0.940, 0.458 MHz
for g1, g2, g3, respectively. The “experimental” values for these
parameters found from the calculated spectra of Fig. 1 are as
follows: 
α,found = −1.319, −0.793, −0.405 MHz; 
β,found =
1.339, 0.833, 0.486 MHz. These give with Eqs. [16], [19],
[20]

Afound =

 2.66 0 1.243

0 1.628 1.611
1.243 1.611 0.894


 MHz.

In the above matrix we forced Axy = Ayx = 0 because other-
wise the insufficient precision in the frequency measurements
from the spectra leads to the senseless result of a negative square,
(Axy)2 = −0.411 MHz2 from Eq. [16a]. On the other hand, in
this case there is no influence of the sign of the nondiagonal ele-
ments of the hyperfine tensor (see Eqs. [17, 18]) on its principal
values, A1, A2, and A3. The principal values and Euler angles
found for four possible choices of relative signs of hyperfine
tensor diagonal elements are collected in Table 1 while the cor-
responding ENDOR spectra at g1, g2, g3 are shown in Fig. 2. It
is quite evident from comparison of the spectra at g2 with the
corresponding spectrum in Fig. 1 that the choice (+ + +) of the
signs of Axx , Ayy, and Azz elements provides the best fit and
gives the principal values and Euler angles (Table 1) closest to

their exact values.
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TABLE 1
Different Sets of Hyperfine Interaction Parameters Determined

from Spectra (Fig. 1) Simulated with A1 = −0.5 MHz, A2 =
2 MHz, A3 = 4 MHz, α = 40◦, β = 60◦, γ = 20◦

The sign of Axx , A1, A2, A3,

Ayy , and Azz MHz MHz MHz α, ◦ β, ◦ γ, ◦
(+ + +) −0.69 2.19 3.68 32.7 55.4 17.6
(+ − +) −2.47 0.97 3.43 11.1 58.8 57.3
(+ + −) −1.95 2.09 3.26 25.5 66.4 14.9
(+ − −) −3.02 0.05 3.11 6.98 70.3 46.5

The corresponding exact characteristics calculated for set II
are equal to

Aexact =

 2.975 1.873 5.915

1.873 3.123 1.415
5.915 1.415 −2.098


MHz,


α,exact = −1.112, −1.505, 1.380 MHz, and 
β,exact = 1.794,

1.606, −0.660 MHz for g1, g2, g3, respectively. ENDOR spec-
tra (Fig. 3) calculated with set II give 
α,found = −1.074,

−1.272, −0.656 MHz, 
β,found = 1.677, 1.417, 1.439 MHz,
which lead to

Afound =

 2.81 0.915 5.758

0.915 2.704 2.665
5.758 2.665 2.159


MHz.

Table 2 contains principal values and Euler angles for eight
possible choices of relative signs of hyperfine tensor elements.
Corresponded simulated ENDOR spectra are shown in Figs. 4

13
parameters presented in Table 1. All linewidths are the same as in Fig. 1.
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FIG. 3. The same as Fig. 1 except A1 = −6 MHz, A2 = 2 MHz, A3 =
8 MHz, α = 30◦, β = 60◦, γ = 165◦.

and 5. Comparison of Fig. 3 with Figs. 4 and 5 shows a best
fit for (+ + −) signs of Axx , Ayy, and Azz elements, and for
positive nondiagonal elements, in accordance with the Aexact.
That is also confirmed by the principal values and Euler angles
given in Table 2 (note also that for set II the (+ − −) signs of
Axx , Ayy, and Azz elements and positive nondiagonal elements
also give satisfactory agreement with the “observed” spectra).

The two cases considered demonstrate that procedure pro-
posed allows rapid and accurate determination of the principal
elements of hyperfine tensor, and its orientation in the g-tensor
coordinate system, over a broad range of relative values of hy-
perfine and nuclear Zeeman interactions. One can conclude also
that the accuracy of the method is higher when hyperfine inter-
action is comparable with the nuclear Zeeman interaction.

The procedure has also been tested using several sets of pub-
lished experimental ENDOR data. Application of our treatment

TABLE 2
Different Sets of Hyperfine Interaction Parameters Determined

from Spectra (Fig. 3) Simulated with A1 = −6 MHz, A2 = 2 MHz,
A3 = 8 MHz, α = 30◦, β = 60◦, γ = 165◦

The sign of Axx , A1, A2, A3,

Ayy , and Azz MHz MHz MHz α, ◦ β, ◦ γ, ◦
(+ + +)a −3.58 2.03 9.23 29.2 48.2 173.3
(+ − +)a −4.55 −1.99 8.80 17.2 46.6 32.8
(+ + −)a −6.29 2.00 7.65 30.4 57.2 174.9
(+ − −)a −6.75 −2.41 7.11 15.8 56.0 16.7
(+ + +)b −4.24 3.41 8.51 197.8 45.2 8.4
(+ − +)b −5.62 −0.50 8.38 188.9 45.6 36.3
(+ + −)b −6.74 3.35 6.74 194.0 55.0 8.35
(+ − −)b −7.51 −1.20 6.65 185.5 55.8 26.8
a Positive Axy , Axz, and Ayz .
b Negative Axy , Axz, and Ayz .
DIKANOV

FIG. 4. 13C ENDOR spectra (35 GHz) simulated using hyperfine tensor
parameters presented in Table 2 for positive Axy , Axz, and Ayz . All linewidths
are the same as in Fig. 1.

to ENDOR experimental spectra gives tensor components, rel-
ative to those obtained after numerical simulations of spectra
at canonical and other intermediate orientations, with accuracy
similar to that obtained with the model examples above. The pro-
cedure can definitely be used as a first step in the analysis of the
orientation-selected spectra. This test shows that the accuracy
of the procedure is directly associated with the accuracy in the
determination of the nuclear frequencies. In this respect one can
suggest that it will give increasingly better results for experimen-
tal data obtained at high microwave frequencies (Q- and W -band

FIG. 5. 13C ENDOR spectra (35 GHz) simulated using hyperfine tensor

parameters presented in Table 2 for negative Axy , Axz, and Ayz . All linewidths
are the same as in Fig. 1.
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and higher) (9, 17–19), where the selected range of orientations
is significantly smaller due to a larger spread of the EPR powder
pattern, and where the measured ENDOR/ESEEM spectra bet-
ter approach the condition “single-crystal-like.” It can also be
applicable for nuclei with I ≥ 1 if the quadrupole splittings are
small and not resolved in the orientation-selected spectra.
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